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The flow of certain materials such as peat muck, printing inks, bitumens,
and cement and clay mortars are described well enough by equation (1.1).

At present, solutions have been obtained for many problems of steady
visco-plastic flow [1,2,3 ]. Non-steady flow problems have not been in-
vestigated extensively; there are in the literature only approximate
solutions of this type of problems [ 3,4 ]. This present paper presents
an exact solution of a non-stationary problem for one-dimensional visco-
plastic flow. The distribution of velocity and the law of change of the
"core" of the flow is derived by the method of Kolodner [6 1. By way of
illustration, the flow is considered for steady drop in pressure.

1. A material is commonly called a visco-plastic material, if it
follows Bingham's law, which for a one-dimensional flow has the form

)
1—10=ip«% (1.1)

Here 7 is the shear stress, 7, is the limiting shearing stress (limit
of flow), p is the coefficient of viscosity, n is normal to the direction
of velocity; the sign of g coincides with the sign of dv/dn.

We consider the flow of a visco-plastic material between two infinite
parallel planes separated by a distance 2h, under the action of a constant
drop in pressure in the direction x. The system of coordinates is chosen
so that the plane xz coincides with the plane of symmetry of the flow,
and the y-axis is perpendicular to it. In this case the equation of motion
will have the form

v, 1 ap %,
—r=0, Z=_%_ 9 _ 9 _ (1.3
w=v:=0, Hr=5=0 3y — oz 3)
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From (1.2) and (1.3) it follows directly that v = v (y, t) and
dp/dx = P(t). The material is assumed to be incompressiﬁle (p = const).
The pressure drop is a given function of time, and for the determination
of the only velocity component different from zero, namely v , we have
equation (1.2). It is necessary to add to the latter the initial and
boundary conditions for determination of v .

A visco-plastic material has the property that its flow begins only
in regions vhere r > 7.; for 7 { 7, the material behaves like an elastic
body. The elastic region we will refer to hereafter as the "core® of the
flow. It is evident that the maximum stress arises in the neighborhood
of the wall, where the material behaves as a viscous fluid, and con-
sequently satisfies the adhesion condition

Ve (b, £) = g (— b, 1) = 0. (1.4)

In the case of non-stationary flow the *core" is a function of time;
it should be determined as a part of the solution. In order that the
problem be correct, it is necessary to impose two conditions on the
required *core". The first condition is obtained from the definition of
the *"core® itself. Thus at its boundaries y = 4-y0(t) we have r = 7,

0v, /0y =0 for y=1y () (1.5)

We have a second condition on the "core*. The "core" may be considered
as a body of variable mass, which changes with change in the cross-sectional
area. Applying the law of the "conservation of momentum® in the diffe-
rential form to the mass of the "core", having a volume of unit length and
breadth, and a height 2y,(t), we obtain

m=F+ (@—un) g (1.6)

where m is the mass of the "core", g is 1ts velocity, vy is the velocity
of the particles separating (or attaching), and F are the surface forces.,

In the case considered the particles are separating (or attaching)
without impact, that is

no=v, mE_F (1.7)
or more particularly

dvg _ 1 dp To

& T d @ *.8)

Integrating (1.8) with respect to t, we obtain

2o (t) = 9 (0) — %i[gg +-"]do (1.9)
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The 1initial distribution of velocity is set down in the form

Fy) for Y (0)<y<h, —h<y<—1yy(0)
F [yo (0)] for —y, (0) <y <<y (0)

vx (y, 0) = { (1.10)

Since the flow has a surface of symmetry, it is necessary to solve the
problem only for a single region, for example {y,(t) <y < h, t > 0}, the
solution in the other region being obtained by change of the sign of the
variable y and y, (¢).

Introducing the dimensionless time ¢ = (v/h?)t, the dimensionless co-
ordinate 7 = y/h and the dimensionless velocity

w(n, § =iy (v, 1)

where po/l is the characteristic drop in pressure per unit length, we re-
duce the equation and boundary equations to the dimensionless form

a 92 {
& =5—P.0, P, =P (1.11)

We shall transform the second condition of the *core" into

1o (E) = 1o (0) — i[P*(c)-]— Oi—c)] do (szfi) (1.13)

where S is a dimensionless parameter. For S = 0, the material goes over
into a viscous fluid. The initial condition has the form

l »
win 0 =I5 F@)=Fl(1)  G,<n<Y (1.14)

w(©) = Fy () O<n<tn  (=00)="25") (1.15)

Here y(0) is half the initial thickness of the "core".

2. For solution of the boundary problem "with the required boundary*,
we take advantage of the method of analytic extension [6,7 ], which per-
mits deriving the equation for the "core" without knowledge of the velo-
city profile of the entire flow. We notice that the problem formulated
above is more complicated version of the classical problem of Stefan.

Hereafter the boundary and initial conditions are understood as limit-
ing, 1i.e.
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limu(n,8)=0 for n>1—0 (>0 (2.1)

limu (v, E)=F,(6°)—-S[P () + ]dc for 71— 8(E)+0 (E>0) (2.2)

8 (o)

lim%=0 for n—»>3(E)+0 (£>0) (2.3)
limu(n, § =F,(n) for E»+0 (3, <n<1) (2.4)

We shall seek a solution in the form .
w(nB=wny+rEn)— P, (9)ds (2.5)

0

where the function w(p, &) and A(£, n) satisfy the equation
dw _ w or __ %
ot — o’ oF — om?

We require that the function w(p, £) satisfy the condition
limw(n, 8 =F, (1) forE—+0 (2.6}

Then the function Alp, &) will have a zero initial condition. For
finding the function w(p, &), it is necessary to inquire into the pro-
perties of F_(y). Since F (17) gives the initial distribution of velocity,
it may be considered cont;muous, and may be differentiated.

In the interval (8 < 7 < 1), the function F_(3) changes from F_(1)=0
(the adhesion condltlon) to the maximum value F_(5,) on the boundary of
the "core"; the derivative F "(r]) is finite, smce within the accuracy of
a constant factor, it gives the distribution of shear stress. We assume
also that in the interval (60 < 7 < 1) it satisfies the Lipschitz condition

| Fy () —F (o) | < A|n— ]|
We consider the function

Fotn) (3 <n<1)
‘I’("))={F*<Bo) (— 00 < 1< )

It is evident that ®(y) is continuous, differentiable, and its deri-
vative is finite and satisfies the Lipschitz condition in the interval
(~w<ng 1),

As the function w(y, &) we take

w(n, 8 = 5= S @ (s) exp |~ I} % 2.7)

-—00
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This function 1is a regular solution of the equation of heat conduction.
Making the substitution o = n + 2 v £f under the integral sign, it is
easy to show that for all internal points in the interval (- o< 7 < 1)

lim (1, &) = —= lim | ® (5 2/ T3 e 2dI= (x)

s 40 Vorzeto o
[ % 1 —x
- — i . \
=57 ) (2.8)

At the point M(1,0) the limit depends essentially on the path by which
the limit is reached. For an approach to the limit along the line n = 1
the limit is equal to 1/2®(1) =

For the function A(p, £) we shall have the following boundary problem:

8. _ 2% (B (E) < <1y
8z T o2

) o k0<a<£o | (2:9)

Jim (7, ) = §p* (6)ds “Z‘i}fim(” exp{—L Zl}Vd—— =7®  (2.10)

lim g, = Fy @) —S Sad(‘;)_ 241)
-3 ‘1/? _SOO(D (3) exp {— 3 (:)/P 612} 'd— =¢0)

Jim (7, €) = 0 (2.13)

The function f(£) is continuous and differentiable for all ¢ > 0. The
value of f(0) is equal to zero. The derivative f’(£) can have a finite
number of discontinuities of the first order and has a singularity at

¢ = 0, Let us establish the nature of this singularity (2.14)
2 + 2
FEISIPE V—Slfb(hﬂ/ﬂﬁ)lBIGXP(—B‘dﬁ< +y7

The function ¢(£) is continuous and differentiable for all ¢ > 0. For
£ = 0 it has a zero value. In clarifying the properties of the derivative
¢’ (£), it is necessary to assign certain limitations on the function 5(£).
Hereafter we shall assume that 8(£) is a finite, continuously different-
iable function which is nowhere equal to zero. Furthermore we require that
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18" (6) I << V_a (2.15)

The sign of the equation conforms to all the solutions known up to the
present and obtained in explicit form.

Introducing a new variable of integration, and differentiating (2.11)
with respect to &, we obtain

84(2)

YO =5z | O 2VER [P0+ Flen e
_1—=3()
(( ® =S ) (2.16)
An estimate of the absolute value of the derivative yields
"P(E)J<G+VE (2.17)

The function ¥ (€) is continuous, finite, and satisfies the Lipschitz
condition in the interval (0 < £ g &)

(W) —T()<A4|g—o0cl (2.18)

The properties of continuity and finiteness are evident; and the con-
dition (2.18) comes from the differentiability of §(£) and the Lipschitz
condition for the function @ (y):

8*(2)

FE—=TF0)< S 1O [5(2) - 2Y/EB] — ' [5(s) +2) 3B] | e—PdB +-

1
S
8*(a)
2V"w )l@'(8(=)+21/s@)fe—ﬁ’d§ SAiE—o|+ 4t —o|=A[E—0]

It is now possible to construct a solution. We designate the region
{8(£) <n <1, 0< £ &} in which the solution is sought, by D, . Let
Di-=~<p< 5({) 0< &< &yl be a region supplementary to D, . We extend
the determination of the solution into the region D_, letting )\(1] & =
for Qp, &) D_. In such a determination, A(y, &) will satisfy all the
imposed conditions. For the construction of such a function Ay, &), we
consider the following problem.

Let D be the closure of the regions D_ and D_ in the set

E{—o0 <m<<L,0<ECE|m—38 |+ 18>0}

and D is the interior of D. It is evident that neither D nor D depends on
5(£). We determine now
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Ay (0, E)=1mM(Q) for Q->M(n, E) (Q€Dx)

We derive the solution of (2.9) in the region D, satisfying conditions
(2.10) and (2.13), and also two step conditions on the arbitrary curve

= 5(&)

. oA .
Ii M, B)— Ii A, £) = lim —— lim —_‘I" 219
n*;&o (m, 8) lm) (n £) =9 (&) hm e T (&) (2.19)

We also require that

A(— o0, §) =0, |he (m, B) | < 4,

A, O\ &)
‘—LaTI<B (2.20)

It will be shown below that such a problem has, moreover, a unique
solution, We seek a solution in the form

_ 1 (f@u—m (=
M. 8 2V n S(g o)/t exP[ 4(5—0)]d°+

£
1 ¢ 2 <c) _ —ln— 3@ _

g
lz—n—a(on*}dc__ 1 g‘l’(c)+?(°)5’(°)

—[2—7n—38(a)] exp TE—9) 2V;0 Vi X
——3()P _  —[2——3 ()]’
x foxp =g — e =i ds (21)

for £ > 0 and Ay, &) = 0 for £ < 0. We show that (2.21) is the unique
solution of the problem posed.

Formally A(y, £) satisfies equation (2.9), but in order that it shall
be a solution, it is necessary that all the integrals entering into equa-
tion (2.21) shall be convergent. We designate by J,, J,, J; and J, the
following expressions:

£

_ 1 (j@t—n = n)-d 2.22

JI_ZV_"‘§ ok P IE—a & (2.22)

n—38(c) __ ¥'(s) —Ih—30E)I° ;4 2.23)

J =TV—:-&<P( ){4(5_0)'/1 2(&—0)‘/:}exp 4(§—a) ? (

£

_ 1 ¥ (o) — =30} do 2.24

J’“_zV?§ Viee P 4E—0) 228
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g
1 2—n—38(c) _ ¥'(s) —[2—n—3 (o))
Jl— V?‘_§<P(a){ ;,}exP d°+

4(E—o)" 2 (£ — a)? 4(E—o)
g
1 ¥ (o) —[2—n—3 (a)]?
+3 V';‘—S, ek exp = d (2.25)
The integral J (1], £) is bounded in the region (- w< g 1, 0% «f <
£,). From the dlfferentxabllxty of f(£) and the condition f(0) = U, it
follows that
3 1—m
Jy = _._V,__:Sj (o) & e~Fdfds for n<1,£20 ('rz‘:zVé—_—o) (2.26)
Forp = 1, J, = 0. From (2.26) it follows that
£ 7*
. 2 "
Wl <yl @1 ePdb|do <4+ BYE (2.2)

From this it follows that
limJ, =0 for g 40, limJ, = f(§) for 5—»1-—0,

From the continuity of J, follows the possibility of the limiting
transformation under the mtegral sign

limJ, = V"" S 7 (a){ lim Sje—ﬁ'dﬁ} do = (¥) (2.28)

Proceeding to the limit for § » — o under the integral sign in (2.26),
we obtain

limJ; =0 for n— —c

The derivative dJ,/dn is bounded in the region (-~ =<7y 1, 0 €<

£).

Differentiating (2.26) with respect to 7, we obtain

|2
a5, 1 7' (a) —(1 — 11)2
By .-V~———;§VE_G eXP 7 F— do (2.29)
There fore
£
aJ 1 ( A4+ B , 24 ., | =

Integrating the expressmn (2.23) for J, by parts, and using the con-
dition ¢(0) = 0, we get
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{ g 2(n, a)
Jy = — ]738'9' (s) \ eFdads (2.31)
"0 z(m B)
where
. oo 7> 5 (5
z (%, ) :;‘/Q__j_f_s_.i z2(n, k) = { 0 7=75(f) (2.32)
o —on <8 (E)

The integral J,(n, tf) is bounded for (0 < € < &) and arbitrary n

dr o)
FARS V_msm | emdzlds<ar+bVE <A (233)
2{(n §)
From this it follows that
240
1 £ (%)
lim J, = ——=\o’ li \ e=Pd3ids = 0
n.,]m._oo 2 VTE (SCP (5){1)..1Too_§oe l}

On the curve n = 8(£) the integral J, has a discontinuity, and

7 B{Z)+0 7 B(Z)—0

(2.34)

Indeed, computing the limit J,{, &) for g » 8(£) + 0

1' Jy = ~Bdad ( _ 3E) —8) 2.35
% %e s =gyer) e®

and its value on the curve 7 =

z 8
T 1), 8] = — V’fg@' ()| e das (2.36)
. 0 0
we obtain
limJ,=J,[8G), &+ 5¢(®  for n>3(E)+0 (2.37)

In an analogous manner the result may be obtained
limJ, = J,[3(8), E]— 3 ¢ () for m— % (£)—0 (2.38)

Subtracting (2.38) from (2.37), we obtain (2.34).

The derivative dJ,/dn is bounded for (0 < £ < &) and arbitrary 5.
Differentiating (2.31) with respect to 7, we have
"(s) — =3 ds (2.39)

8y
4(E—0)

2 V;:§

m»e

G

Hence
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& —1/2
! gﬂ—ds=-“—ﬂVﬁ+bﬁr<A (2.40)
0

aJ,
T | S

The integral J,(£, ) is bounded in the region (- =<5 g 1, 0g €<

&) .
S
[J3]<B%Vd° =2BVE< 4 (2.41)
0 E-——G
From (2.41) follows lim J3=0 for all g
i-to
: _ 1§ ¥ [ —[1—=3(9)? _
fim Jo=— ZVnSV—c{nE.IPooexP L(E—0) }d“’—o (2.42)

n~>—00

The propriety of the boundary transformation under the sign of the
integral proceeds from the uniform convergence of J,(y, &).

The derivative dJ,/dn is bounded for 0< & < &;. For proof of this

assertion, we shall write the derivative

0J3 1 Q‘I"(c) [n—3% (o)] — [n—3 ()2 )
6"7 4V;:_§ (5_0)'/2 exp 4(5—0’) dO' (_.43)
in the form
‘9_13=‘F(E)S{'n~—ﬁ(c) ¥ }exp — b @ g
i VR JluE—9"  2E—o)" iE—0)
SRR == n— Zi—ser
AR et
Lratve — =)
YT §V§—ueXp AT ds (2.44)

We designate these expressions by K,, K,, and K, respectively. Evalu-

ation of K, gives .
¥ — v
| Ka| < 8' I —b(o)ds < AVE<B (2.45)
for all finite 5 and (0 £ < &) For K, we have
| W (& ; do
K31 <
K| <R SVCV5_0<B (2.46)

Change of variable under the integral sign gives for K, the expression
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]
‘F (E) —p n — Bo
K = e Bd?‘ 6 = 2.
=Ve ( ) (247)

2(n, &)
where, as before z(y, &) conforms with (2.32).

From (2.47) it follows that
K S| () <B (2.48)

The derivative dJ;/dn in passing the curve 5 = §(£) undergoes a dis-
continuity
aJ 3 . aJ
lim 2 — lim 2=% 2.49
1B(@+0 O auBEo 01 © (2.49)
This assertion follows from the continuity of K, and K, and from the
character of the discontinuity of K, on the curve 5 = 8(5.

Repeating the necessary considerations, it is easy to establish that
the integral J,(y, £) is a continuous function for all 5 and 0< £< &,
for that mtegralJ »0forf{->+0and-w<ngl, andJ, » 0 for

N+ — oo,

Further, the derivative dJ /617 is finite for 0 € £ ¢ fo, and con-
tinuous in the half-zone (- « < <1 0< &g f ).

From the properties of the integrals J , and J, enumerated above,
it follows that A(p, &) in the form (2.21) satlsfjxes equatlon (2.9) in
the region D and the conditions for p = 1, for n = ~ o and for £ = 0. On
the curve n = 8(£) the function Alv, €) and its derivative dA/dn have
an assigned discontinuity. Furthermore, the function Alp, ) is finite,
as is its derivative, in D. This means that it is a solution to the
problem that was posed. It remains to demonstrate the uniqueness of the
solution obtained. We assume that two solutions exist, A, and A, having
the enumerated properties. It is evident that their difference, A | =

~ X,, satisfies equation (2.9) within D, on the boundaries it takes
tﬁe vaiue zero, is finite together with its derivative, in D. Furthermore,
A, 1s continuous in D. Then, on the basis of a well-known theorem {see,
for example [ 8], Chapter XXIX), A, = 0 in the region D, that is A, = A,.
We return to the problem of mt.erest In (2.21) the arbitrary function
8(£) is introduced. If one requires that

lim A (n, §) =0, lim 2-0 (2.50)
1-8(Z)—0 1->8(§)—0
conditions (2.11) and (2.12) will be fulfilled, and Alp, £) on the right
of the curve 5 = §(£) will yield the required solution.

The conditions (2.50) may be regarded as the equations for determin-
ation of the required boundaries of the "core®.
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Thus we have two equations for the determination of.one unknown func-
tion 8(£). We show that any solution of the first equation (2.50) satis-
fies at the same time the second equation (2.50), and conversely.

We consider A(y, £) in the region D_, that is, to the left of the
curve = 8(£). It satisfies the zero initial condition, becomes zero at
n » — o and for n » 8(£) - 0, is finite, as is its derivative in the
closed region D , and consequently A = 0 in the region D_. Hence, it
follows that dA/dn = 0 in the region D_. Converse considerations are
proved in an analogous manner. Writing equation (2.50) in detail, we have

3 =] g 8 c
2 (ol e—rdndo— (o (o) {{ e=tap 4 { e—2'd3} do — (2.51)
Vﬂ&f (c);e 8 W§<p\){§ i § d

|3
1§ ¥ () —pE=3EP_  —[2—=3E =3 ) ;e
”zv;&m—a{“p iE—o)  OPTTTaE—) }d“ p
0

4 g
1 20 (=3, 1 ?'(s) 2.52
2V§§V&-—ceXp i @ zw(gv X (2.52)

—[B () =3 @) —[2—=3(E) —3 ()]
X {exp T P 4(£_6) }ds +

3
1 ¥ (a) . —[BE)—3 @)
7= ) e (B @ —b (o) exp ==+

4}/1':0(5
— 23 3 2 L ]
+ [2—8(8) —&{o)]exp { 4(5&) P (el }d:: _._—ég

=3(E)-5(°) 9. = 13 9y = 2—5(E)—8{c)
2VE—s ' 1T Vi =, ' 12VE—aq

for the condition 8§(0) = 8,

If one of these equations should have a unique solution, the solution
would give the required law of change of the "core* with time. The solu-
tion (2,51) or (2.52) along with (2.21) and (2.5) completely describe the
flow.

3. We consider the flow for a constant pressure drop. Suppose at the
instant ¢t = 0, a pressure drom — dp/dx = p/l is imposed on the visco-
plastic medium at rest, this pressure drop being maintained constant for
all subsequent times. It is evident that the flow begins only for
p>r l/h since for p < 7,1/h, the material would behave as an elastic
body. 'Ihus 0 S< 1, where S = r,1/ph gives the ratio to the actual
pressure of the pressure at whlch motion starts. For the functions f(£),
HE) and W(E) we have

£
fO=—2:  e®=—5{7,  T@=0 (3.1)



1326 A.I. Safronchik

The function 8(¢) is determined from equation (2,53), which in the
case considered takes the form, for the condition 6(0) = 1

g
—[t—3 @ _ do
Sexp iE—9 Vie. (3:2)
0
4
_ s —BE-@P, o —R—3E—3E)| _ d
—28{‘”‘? T =ra by

0

This nonlinear integral equation is of a type similar to the equation
of Volterra. An exact solution is as yet difficult to obtain, so that we
give an approximate solution for sufficiently small values of {. For
small ¢ in the right part of (3.2) it is possible to assume that §(¢) =
5(0) = 1; then

£
—[L—3(E)) ds -
§6XP ZE—0) VE_U—%’VE (3.3)
Using the substitution a(c)==-1l:§igl and integrating by parts, we
obtain 2VE—s

oo
exp {— [ ()%} — 2% (0) S)e—ﬂ'd@=s (3.4)

« (0,

Investigation of this equation shows that it has a unique, and more-
over, a positive solution.

For the boundary of the "core" and its velocity we obtain

§E)=1—2a(0)VE (3.5)

. S e In [1 — 2a (0) VE]
N == —— 1 -~ .6
o atO)Vs{ T T ovE (3:6)

where a(0) is the solution of (3.4). Formulas (3.5) to (3.6) are valid
in the interval (0 g & < 1/4 [@(0) 12, Reverting to the previous variable,
we obtain

Yo (t) = h—2a(0) ) vt (3.7
_P Tl L 1—2a(OVi/h
%o (1) _P—l{t +pa (0) 1/\' [1 +n 20(0) Vvt /h ]} (3.8)

The distribution of velocity in the flow can also be easily obtained,
but it is not derived here.

We notice that the method considered above is useful only for deter-
mination of a solution, that is, for finite values of time.

In conclusion, the author expresses his gratitude to S.V. Fal’kovich
for his direction in the preparation of the paper.
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