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The flow of certain materials such as peat muck, printing inks, bitumens, 
and cement and clay mortars are described well enough by equation (1.1). 

At present, solutions have been obtained for many problems of steady 
visco-plastic flow [ 1.2.3 1. Non-steady flow problems have not been in- 

vestigated extensively; there are in the literature only approximate 
solutions of this type of problems [ 3.4 1. This present paper presents 
an exact solution of a non-stationary problem for one-dimensional visco- 

plastic flow. The distribution of velocity and the law of change of the 

“core” of the flow is derived by the method of Kolodner [ 6 1. By way of 

illustration, the flow is considered for steady drop in pressure. 

1. A material is comnonly called a visco-plastic material, if it 

follows Bingham’s law, which for a one-dimensional flow has the form 

(1.1) 

Here r is the shear stress, r O is the limiting shearing stress (limit 

of flow), ~1 is the coefficient of viscosity, n is normal to the direction 
of velocity; the sign of g coincides with the sign of &/an. 

We consider the flow of a visco-plastic material between two infinite 

parallel planes separated by a distance 2h, under the action of a constant 

drop in pressure in the direction x. The system of coordinates is chosen 

so that the plane nz coincides with the plane of symaetry of the flow, 

and the y-axis is perpendicular to it. In this case the equation of motion 

will have the form 

av, - 
at 

__+g+vf_$ 

vy = v, = 0, 
ao, ac, 
ax -aZ= 0; gf=gdl 

(1.2) 

(1.3) 
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From (1.2) and (1.3) it follows directly that ux = o (y, t) and 
Jp/ax = P(t). ‘Ihe material is assumed to be incompress iEle b = const). 

The pressure drop is a given function of time, and for the determination 
of the only velocity component different from zero, namely u , we have 
equation (1.2). It is necessary to add to the latter the initial and 
boundary conditions for determination of vx. 

A visco-plastic material has the property that its flow begins only 
inregionswherer >rO; fors(rO the material behaves like an elastic 
body. Ihe elastic region we will refer to hereafter as the “core’ of the 
flow. It is evident that the msximum stress arises in the neighborhood 
of the wall, where the material behaves as a viscous fluid, and con- 
sequently satisfies the adhesion condition 

v, (A, t) = 2i, (- h, t) = 0. (1.4) 

In the case of non-stationary flow the .core” is a function of time; 
it should be determined as a part of the solution. In order that the 
problem be correct, it is necessary to impose two conditions on the 
required ” core” . ‘Ihe first condition is obtained from the definition of 
the “core. itself. ‘Ihus at its boundaries y = + y,(t) we have r = r O, 

f%,/ay = 0 for Y = f YlY (t) (I*51 

We have a second condition on the “core*. The *core” may be considered 
as a body of variable mass, which changes with change in the cross-sectional 
area. Applying the law of the “conservation of momentum” in the diffe- 
rential form to the mass of the a core” , having a volume of unit length and 
breadth, and a height S,(t), we obtain 

dv 
m -0 = F + (v,, - vl) 2 

dt (1.6) 

here m is the mass of the *core”, u. is its velocity, vi is the velocity 
of the particles separating (or attaching), and F are the surface forces, 

In the case considered the particles are separating (or attaching) 
without impact, that is 

or more particularly 
vo = Vl, 

mdvO =F 
dt (1.7) 

duo 1 aP 70 
zi = -Pdz--py,(t) 

Integrating (1.8) with respect to t, we obtain 
t 

v. (t) = v. (0) - + ([$ + A] da 
Yo (0) 

0 

(1.8) 

(l-9) 
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'lhe initial distribution of velocity is set down in the form 

F (Y) for 
vx (y, 0) = 

yo (0) < Y < h - h < y < - Yo (0) 

F [y. @)I for - y. (0) <Y d YO (0) 
(1.10) 

Since the flow has a surface of symmetry, it is necessary to solve the 

problem only for a single region, for example {y,(t) < y < h, t > 01, the 

solution in the other region being obtained by change of the sign of the 

_ variable y and y,(t). 

Introducing the dimensionless time [ = (y/h*) 

ordinate v = y/h and the dimensionless velocity 

t, the dimensionless co- 

where poll is the characteristic drop in pressure per unit length, we re- 

duce the equation and boundary equations to the dimensionless form 

au Pu 
ig =a$ - - p, (0, p, (4 = ;p @I 

u(l,E)=O, &=O for -q =6 (+y 

(1.11) 

(1.12) 

We shall transform the second condition of the .core" into 

(1.13) 

where S is a dimensionless parameter. For S= 0, the material goes over 

into a viscous fluid. 'Ihe initial condition has the form 

u(qO)=+$P(y)=F:(y) (60 < ? < 1) (1.14) 

uo (0) = F, (6,) (0 < ? < 60) ( 6, = ij (cl)= yp) (1.13) 

Here y(O) is half the initial thickness of the ncore*. 

2. For solution of the boundary problem "with the required boundary", 

we take advantage of the method of analytic extension 16,7 I, which per- 

mits deriving the equation for the "core" without knowledge of the velo- 

city profile of the entire flow. We notice that the problem formulated 

above is more complicated version of the classical problem of Stefan. 

Hereafter the boundary and initial conditions are understood as limit- 

ing, i.e. 
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limu(q, 5) = 0 for q-+1-0 (E>O) (2.1) 

limu (7, E) = F, (4J - \ [p’ (0) + &] do for ?-+ 5 RI+ 0 (E > 0) (2.2) 

lirnz10 for ?-+~K)fO (4>0) P-3) 

l~uh O=wl) for E--t-O (6,<l)< 1) (2.4) 

We shall seek a solution in the form 

u (rl, 0 = 20 (TV Q + h (4,q) - [ P, (0) do (2.5) 

where the function w(q , 5) and X(e, q 1 satisf’y the equation 
Bw saw ah PA 
gc=a?p’ z=w 

We require that the function UJ(~, 5‘) satisfy the condition 

lhen 
finding 
perties 

the function X(q) 5) will have a zero initial condition. For 
the function w(l), t), it is necessary to inquire into the pro- 
of F,(T). Since F,(q) gives the initial distribution of velocity, 

it may be considered continuous, and may be differentiated. 

limw (q, E) = F, (4 for 4-+ +0 (2.6) 

Tn the interval (6, 6 p < 11, the function F,(q 1 changes from F+(l) = 0 
(the adhesion condition) to the maximum value Fe@,) on the boundary of 
the .core. ; the derivative F*‘(q) is finite, since, within the accuracy of 
a constant factor, it gives the distribution of shear stress. We ass- 
also that in the interval (6, < 9 < 1) it satisfies the Lipschitz condition 

I F, (‘i) - J”, (4 I < A I ri - 0 I 

We consider the function 

It is evident 
vative is finite 
(- o”<q< 1). 

that &,I) is continuous, differentiable, and its deri- 
and satisfies the Lipschitz condition in the interval 

As the function t&j, I$) we take 
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Ihis function is a regular solution of the equation of heat conduction. 

Making the substitution (I = n + 2 \/t/-3 under the integral sign, it is 

easy to show that for all internal points in the interval (- - < T] < 1) 

(2.8) 

At the point M(l,O) the limit depends essentially on the path by which 

the limit is reached. For an approach to the limit along the line 7 = 1, 

the limit is equal to 1/2@(l) = 0. 

For the function X(n) 5) we shall have the following boundary problem: 

a,. a?), 
! 

S([)<q<l? _=- 
a: a.<? 0<5<::0 ’ 

limi.(r,, 5)= P,(~)ch----$ 
n+1-0 s 

i 
::I 

0 --co 

0 (0) cxp .(- 71 pT = f (4) 

rr- s(F)+0 
i. (+l, C_) = F, (8,) -S \ 6 - 

0 

5 

lim 

lim ), (7, E) = 0 
i- $0 

(2.9) 

(2.10) 

(2.12) 

(2.12) 

(2.13) 

Ihe function f(t) is continuous and differentiable for all 5 > 0. ‘Ihe 

value of f(O) is equal to zero. The derivative f’(t) can have a finite 

number of discontinuities of the first order and has a singularity at 

5 = 0. Let us establish the nature of this singularity (2.14) 

Ihe function +(t) is continuous and differentiable for all 5 > 0. For 

6 = 0 it has a zero value. In clarifying the properties of the derivative 

c$‘@), it is necessary to assign certain limitations on the function S(c). 

Hereafter we shall assume that 6 (5) is a finite, continuously different- 

iable function which is nowhere equal to zero. Furthermore we require that 
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C 
i 6’ (8 I < r/~ (2.15) 

‘Ihe sign of the equation confom to all the solutions known up to the 
present and obtained in explicit form. 

Introducing a new variable of integration, and differentiating (2.11) 

with respect to 5, we obtain 

‘p’ (E) = - & - -&z “‘i’& (1 + 2 v/Fa) [a’(;) +- &]exp (- p’) dj3 

--co 

(6’ (E) = 13) (2.16) 

An estimate of the absolute value of the derivative yields 

! ‘9’ 6) I < a + & (2.17) 

Ihe function Y (6) is continuous, finite, and satisfies the Lipschitz 

condition in the interval (0 < 6 ( f,) 

I Y (4) - y (0) ! < A I4 - 0 I (2.18) 

‘Ihe properties of continuity and finiteness are evident; and the con- 

dition (2.18) comes from the differentiability of S(t) and the Lipschitz 
condition for the function @‘(v ) : 

W5) 

1uE)--\r(wG~ \ j 0 [6 (2) + 2v/rp] -a [S(g) $2 daa] j e-P*d/3 $- 
--M 

S’(a) 

ti s 2 G- fj!+(<) 
(0’ (6( 3) + 2vg,3) ( e-fi’dp < A, i 5 - o 1 + A, j E - CJ 1 = A j E - o 1 

It is now possible to construct a solution. We designate the region 

IS(5‘)<q< 1, 0<5‘<5,r in which the solution is sought, by D+. Let 

D_r - - < q < S(e), 0 < t ( t,f be a region supplementary to D+. We extend 

the determination of the solution into the region D_, letting X(7, 5) E 0 

for Q(v, 5) D . In such a determination, h(q, 6) will satisfy all the 
imposed conditfions. For the construction of such a function A(n) 51, we 
consider 

Let D 

and D is 
S(5). We 

the following problem. 

be the closure of the regions D_ and D+ in the set 

~~--<<rl~,O<5\<Eo,Iri--6,l+lEI>O~ 

the interior of 25. It is evident that neither D nor b depends on 
determine now 
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We derive the solution of (2.9) in the region D, satisfying conditions 
(2.10) and (2.13), and also two step conditions on the arbitrary curve 
‘I = S(C) 

We also require that 

h(--,E)=O, P,(%E)I<~~ (2.20) 

It will be shown below that such a problem has,moreover, a unique 
solution. We seek a solution in the form 

- lr - 8 (~)P - exp -12-~--6(0)12 
4(E---0) 4(5--o) 

(2.21) 

for Q > u and X(q, [) E 0 for 54 u. We show that (2.21) is the unique 
solution of the problem posed. 

Formally h(q) ~$1 satisfies equation (2.9), but in order that it shall 
be a solution, it is necessary that all the integrals entering into equa- 
tion (2.21) shall be convergent. We designate by J,, J,, J3 and J, the 
following expressions: 

(2.22) 
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(2.25) 

‘Ihe integral J,(I), 5) is bounded in the region (- m < n < 1, 0 < 4? Q 

$1. From the differentiability of f(t) and the condition f(O) = 61 it 
follows that 

J ,=-+&(a) je-@‘deda for ?<%, ~20 (?*=+-) (2.26) 
0 co 

For 7 = 1, J, = 0. From (2.26) it follows that 

(2.27) 

From this it follows that 

limJr=O for ~-.++o, limJ,=f(E) for ~-PI-O, 

From the continuity of J, follows the possibility of the limiting 

transformation under the integral sign 

lim J1 = (2.28) 
n-1-o 

&S”(G){~;~ k-@*d~}dc=l(i) 
0 

proceeding to the limit for p + - 00 under the integral sign in (2.261, 

we obtain 

lim J1 = 0 for 

‘lhe derivative dJ,/dq is bounded in 

59). 

q-‘--m 

the region (- OQ < v < 1, 0 4 f < 

~fferentiating (2.26) with respect to T, we obtain 

Therefore 

(2.29) 

Integrating the expression (2.23) for J, by parts, and using the con- 
dition $AO) = 0, we get 
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(2.31) 

where 
03 ‘4 > 6 (5’ 

2 (‘i, G) = r-_s. 2 r/<-D 2 i?, 5) = i 0 .q= 6 (4) (2.32) 
--CT’ ?< S(5) 

The integral 

I J, 

From this it 

0n the curve Q = 6(t) the integral J, has a discontinuity, and 

lim J,-T tc;_iiJ2 = YW (2.34) 
%- W)$O /* 

Indeed, computing the limit J,(v, 6, for q + S(t) + 0 

(2.35) 

we Obtain 

(2.36) 

lim J, = J, [6 (Z), El + a ‘p (5) for 7j -9 F (5) + 0 (2.37) 

In an analogous manner the result may he obtained 

lim J, = J, [a (i), 5]- $ cp (;f for q-+8(5)--0 (2.38) 

Subtracting (2.38) from (2.3'71, we OkJtain (2.34). 

The derivative dJ,/dq is bounded for (04 t\< to> and arbitrary v. 

Differentiating (2.31) with respect to T, we have 

(2.39) 

Hence 



Non-steady flow of a visco-plastic material 1323 

50) 

The integral J, Gf, q I is bounded in the region (- m < q < 1, 0 \< 5 < 

2BJ0<A (2.41) 

From (2.41) follows lim J, =0 for all 7j 
z++o 

The propriety of the boundary transformation under the sign of the 
integral proceeds from the uniform convergence of J, (q, [I. 

‘Ihe derivative aJ,/d T] is bounded for 0 < [ 5 5,. For proof of this 
assertion, we shall write the derivative 

in the form 
dJ3 

a’r ew 
- Pi - 6 (WI2 do _ 

4(E--a) 

1 z y’(Z) 
-_. 

\ 4 lGt 

--r(a) IT 

(5 - op 
- 6 (a)] exp -F(F2$)12 do + 

(2.43) 

(2.44) 

We designate these expressions by K,, K2, and K3 respectively. Evalu- 
ation of K, gives 

7Y(5)-Y(o) I 
WC +7s (E__)V’ J’i--6(W3 < A r/t< B (2.45) 

0 

for all finite T] and (0 c 5 < 5,). For K, we have 

,W@$+&<B 
Tc u d (2.46) 

Change of variable under the integral sign gives for K, the expression 
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where, as before Z&I, 6) conforms with (2.32). 

From (2.47) it follows that 

‘Ihe derivative dJ,/dv in passing the curve 7 = S(e) 
continuity 

qJl;+O 2 - I~~fSf_-o a$ = y (E) I im 

This assertion follows from the continuity of K, and 

(2.47) 

(2.48) 

undergoes a dis- 

(2.49) 

K, and from the 
character of the discontinuity of K, on the curve ; = S(t), 

Repeating the necessary considerations, it is easy to establish that 

the integral J,(q) 5) is a continuous function for all q and 0 < 5‘ < to, 

for that integral J, -t 0 for 5 + + 0 and - DO < q ( 1, and J, + 0 for 

n-+-m* 

Further, the derivative dJ,/‘aq is finite for 0 ( 5 ( to; and con- 
tinuous in the half-zone (- 00 < n < 1, 0 < [ < t,). 

From the properties of the integrals J , J2, J and J4 enumerated above, 

it follows that h(q, 5) in the form (2.21j satis ies equation (2.9) in ? 
the region D and the conditions for q = 1, for q = - 0~ and for 5 = 0. On 

the curve 9 = 6 (0 the function X(Y, [) and its derivative d A/&‘? have 

an assigned discontinuity. Furthermore, the function Ah, [I is finite, 

as is its derivative, in D. This means that it is a solution to the 

problem that was posed. It remains to demonstrate the uniqueness of the 

solution obtained. We assume that two solutions exist, A, and A, having 

the enumerated properties. It is evident that their difference, A 0 = 

YI, 
satisfies equation (2.9) within b, on the boundaries it takes 

t e va ue zero, is finite together with its derivative, in a. Furthermore, 

h0 is continuous in D. Iben, on the basis of a well-known theorem (see, 
for example [ 8 I , Chapter XXIX), A, E 0 in the region D, that is A, I A,. 

We return to the problem of interest. In (2.21) the arbitrary function 

S(c) is introduced. If one requires that 

conditions (2.11) and (2.12) will be fulfilled, and X(q, 5) on the right 
of the curve q = S(e) will yield the required solution. 

The conditions (2.50) may be regarded as the equations for determin- 
ation of the required boundaries of the “corem. 
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l’bus we have two equations for the determination of&one ~UIOWII func- 

tion S(f), We show that any solution of the first equation (2.50) satis- 
fies at the same time the second equation (2.50), and conversely. 

We consider h (7, c) in the region D_, that is, to the left of the 

curve q - S(t). It satisfies the zero initial condition, becomes zero at 

n -+ - m and for 7 + 6@) - 0, is finite, as is its derivative in the 

closed region D_ , and consequently X P 0 in the region D_. Hence, it 
follows that aA/dq s 0 in the region 0,. Converse considerations are 

proved in an analogous manner. Writing equation (2.50) in detail, we have 

(2.51) 

for the condition S(O) = 8,. 

If one of these equations should have a unique solution, the solution 
would give the required law of change of the “core” with time. The solu- 

tion (2.51) or (2.52) along with (2.21) and (2.5) completely describe the 
flow. 

3. We consider the flow for a constant pressure drop. Suppose at the 

instant t = 0, a pressure drom - dp/dr = p/l is imposed on the visco- 
plastic medium at rest, this pressure drop being maintained constant for 

all subsequent times. It is evident that the flow begins only for 
p > r 0 l/h, since for p Q r 0 l/h, the material would behave as an elastic 

body. lhus 0 4 S < 1, where S = T ,l/ph gives the ratio to the actual 

pressure of the pressure at which motion starts. For the functions f(c), 

+@> and Y@> we have 
c 

f(E) = -$, v(E) =-8 s 8&, Y(E) = 0 
0 

(34 
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The function S(c) is determined from equation (2.53), which in the 
case considered takes the form, for the condition 6(O) = 1 

E 

c exp 
- [I - 6 (c)l2 do 

6 
4 (<-a) = = Q-II (3.2) 

e,p-[““‘--~(~)12+exp -[2--s(t)--s(a)j2 
4 (c; - 0) 4 (4 - 0) 

0 

‘Ihis nonlinear integral equation is of a type similar to the equation 
of Volterra. An exact solution is as yet difficult to obtain, so that we 
give an approximate solution for sufficiently small values of LJ. For 
small [ in the right part of (3.2) it is possible to assume that 6(t) = 
S(O) = 1; then F . 

s - [I - 6 (<,I2 do 

exp 4(f--) I/t;_,J 
= = 2s‘c/i 

0 

(3.3) 

Using the substitution oc (a) = 1 - 6 (4) 
_ and integrating by parts, we 

obtain 2r/E--0 

M 
R 

exp I--- Ia (O)l”) - 2a (0) 1 e-P’dp = S (3.4) 
= (0) 

Investigation of this equation shows that it has a unique, and more- 
over, a positive solution. 

For the boundary of the “core” and its velocity we obtain 

6 (E) = 1 - 2a (0) Ji (3.5) 

(3.6) 

where a(O) is the solution of (3.4). Formulas (3.5) to (3.6) are valid 
in the interval (0 < 5 < l/4 [o(O) 1 *. Reverting to the previous variable, 
we obtain 

y. (t) = h - 2&(O) JG 

vo(t) =f t + 
%l 1 -2a (0) vvt / h 

Pa (0) 2a(O) Jf/vt/h 

The distribution of velocity in the flow can also be easily 
but it is not derived here. 

(3.7) 

(3.8) 

obtained, 

We notice that the method considered above is useful only for deter- 
mination of a solution, that is, for finite values of time. 

In conclusion, the author expresses his gratitude to S.V. Fal’kovich 
for his direction in the preparation of the paper. 
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